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ABSTRACT
Semiparametric mixed-effects models (SMM) have received increas-
ing attention in recent years because of the greater flexibility in
analysing longitudinal trajectories. However, the normality assump-
tion of SMM may be unrealistic when outliers occur in the data.
This paper presents a semiparametric extension of the multivariate
t linear mixed-effects model (MtLMM), called themultivariate t semi-
parametric mixed model (MtSMM). To be specific, the MtSMM incor-
porates a parametric linear function related to the fixed covariate
effects and random effects which have a joint multivariate t distri-
bution together with an arbitrary nonparametric smooth function to
capture the unexpected patterns. A computationally analytical EM-
based algorithm is developed for carrying out maximum likelihood
estimation of the MtSMM. Simulation studies and a real example
concerning the analysis of PBCseq data are used to investigate the
empirical behaviour of the proposed methodology.
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1. Introduction

Analysis of longitudinal data, which aims to characterize the dependence of repeated mea-
sures between and within-subjects over time, has received growing attention in a variety
of applications such as biological, economic, psychological, and clinical studies. A vast
number of statistical models and methods have been proposed to handle such tasks. For
examples, the linear mixed-effects model (LMM; Laird and Ware [1]) which utilizes the
random component to take into account the variabilities of subjects is a commonly used
analytical tool. Nevertheless, the linear relationship between the response and the covari-
ates of LMM may be too restrictive to model any particular time trends using a simple
parametric function, especially when the variety of response over time is in a complicated
manner. To release such a limitation, Zeger and Diggle [2] proposed the semiparametric
mixed models (SMM) in which the time effect is modelled nonparametrically. The para-
metric component in SMM provides a simple summary of covariates effects which are of
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main scientific interest, while the baseline function is included to enrich model flexibil-
ity. With both parametric and nonparametric components, SMM could be more flexible
than the LMM.There exist generalmethods for appropriating the nonparametric functions
such as the profile kernel, backfitting, smoothing spline, penalized spline and local linear
regression methods. Recent work by Liu and Tu [3] explored the use of bivariate smooth
functions in the semiparametric model for a pair of continuous longitudinal outcomes.
Earlier developments of SMM can be found, for instance, in [4–9].

In longitudinal studies, it is common to have data withmore than one response variables
repeatedlymeasured on the same subject over a certain period of time leading tomultivari-
ate longitudinal data. A number of modelling methods have been developed specifically
for dealing with multivariate longitudinal data. Shah et al. [10] originally proposed the
multivariate linear mixed model (MLMM) and developed an iterative expectation maxi-
mization (EM) algorithm [11] to estimate themodel parameters. For further developments
of MLMM along with its applications, one can refer to Sammel et al. [12], Song et al. [13],
Roy [14] and Wang and Fan [15], among others. To the best of our knowledge, however,
the work discussing semiparametric models for multivariate longitudinal data is relatively
rare up to now.

In the aforementioned models, the random effects and the within subject errors are
routinely assumed to be normally distributed for desirable mathematical properties and
computational tractability. However, such an assumption is not always tenable, especially
when data contain influential and/or outlying observations. For a robust modelling of lon-
gitudinal data in the presence of potential outliers or atypical observations, a large amount
of work has been done in the literature by adopting a more flexible class of distribu-
tions as a substitute for the routine use of normality assumption. For example, Pinheiro
et al. [16] proposed a robust extension of LMMs by considering a joint multivariate-t dis-
tribution [17] for the random effects and within-subject errors, known as t linear mixed
models (tLMM). Further developments along this line can be found in [18–21]. Under the
framework of SMM, Qin and Zhu [7] and Sinha and Sattar [9] developed robust meth-
ods for maximum likelihood (ML) estimation of model parameters, which can be used to
down weight the influence of potential outliers. However, the application of the referred
approaches is limited to a single outcome longitudinal data. For robust inference against
potential outliers in multi-outcome longitudinal data, Wang and Fan [22] have extended
the tLMM to amultivariate setting, called themultivariate t linearmixedmodel (MtLMM).
A comprehensive study that covers the ML and Bayesian methodologies, computational
strategies and applications of the MtLMMs can be found in [23–26].

In spite of having robustness against outliers or atypical observations, the linearity sce-
nario of MtLMMs can limit the practical use of the model to link the relationship between
the responses and the covariates. Recently, Wang and Lin [27] and Wang and Castro [28]
studied the multivariate t nonlinear mixed-effects model, which allows for the nonlinear
fashion of the MtLMM and the robust extension of a multivariate nonlinear mixed-effects
model (MNLMM; Marshall and Zerbe [29]), from the ML and Bayesian perspectives.
Although the MtNLMM as well as the MNLMM can provide a wider range of practical
uses than the linear models, they are considerably more complicated and computationally
intensive. The main objective of this paper is to extend the existing SMM to a multivari-
ate and robust settings, calledmultivariate t semiparametric mixedmodels (MtSMM). The
proposed MtSMM, which incorporates the linear function in the fixed and random effects
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to explore the effects of time-independent covariates and the time-dependent smooth
function, providing a compromise between the MtLMM and MtNLMM approach. The
proposed model indeed provides robustness in handling multivariate longitudinal data
evolving potential outliers or heavy-tailed noises by considering a joint multivariate t
distribution [17] for the random effects and within-subject errors, and adds extra flexi-
bility by imposing an arbitrary smooth function of time in the framework of MtLMM. To
carry out ML inference of the MtSMM, we consider a spline method for appropriating the
nonparametric function and develop a computationally feasible expectation conditional
maximization (ECM) algorithm [30] for estimating the unknown parameters.

The remainder of this paper is organized as follows. In Section 2, we establish the nota-
tion, formulate the MtSMM and describe the implementation of the smoothing spline
method for estimation of the nonparametric function. An iterative ECM algorithm for
computing ML estimates is described in Section 3. We proceed with a simulation study in
Section 4 to examine the effectiveness of the proposed methodology and report the anal-
ysis results of a real data set. Finally, we conclude with a brief discussion in Section 5. All
technical proofs are deferred to the Appendix.

2. Model specification

Suppose there are a sample of n subjects where the ith subject has r outcome vari-
ables with si repeatedly observations over time. Let Y i = [yi1 : . . . : yir] = [y�

i,1 : . . . :
y�
i,si]

� be a si × r matrix of responses for the ith subject (i = 1, . . . , n), where yij =
(yij,1, . . . , yij,si)� is a column vector of responses for the jth outcome (j = 1, . . . , r) and
yi,k = (yi1,k, . . . , yir,k) is a row vector of responses collected at the kth occasion (k =
1, . . . , si). Let Ei = [ei1 : . . . : eir] = [e�i,1 : . . . : e

�
i,si]

� be a si × r matrix of within-subject
errors, where eij = (eij,1, . . . , eij,ni)� is a column vector of error terms corresponding to
yij and ei,k = (ei1,k, . . . , eir,k) is a row vector of error terms corresponding to yi,k. For nota-
tional convenience,we employ the vec(·)operator, which strings out all columns of amatrix
vertically, to obtain stacked vectors, that is, yi = vec(Y i) and εi = vec(Ei) for the response
variables and error terms, respectively, which are of ni = sir dimension.

The MtSMM for the ith subject can be expressed as

yi = Xiβ + g(ti) + Zibi + εi (1)

along with the distributional assumption[
bi
εi

]
∼ tq+ni

([
0
0

]
,
[
D 0
0 Ri

]
, ν
)
, (2)

where td(μ,�, ν) denotes the multivariate t distribution with dimension d, location
vector μ, scale-covariance matrix �, and degrees of freedom (DOF) ν. Herein, Xi =
diag{Xi1, . . . ,Xir} andZi = diag{Zi1, . . . ,Zir}, whereXij is a si × pj full rank designmatrix
for fixed effects corresponding to the jth outcome of the ith subject, and Zij, formed
usually by a subset of Xij, is a si × qj design matrix for random effects. Besides, g(ti) =
(g1(ti)

�, . . . , gr(ti)�)�, where ti = (ti,1, . . . , ti,si)� is measurement time points of the
ith subject, g j(ti) = (gj(ti,1), . . . , gj(ti,si))� with gj(ti,k) being an unknown twice differen-
tiable smooth function for the jth outcome measured at occasion ti,k. The block diagonal
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structures of Xi and Zi allow the analysts to link the grand and subject specific relation-
ships between covariates and each response, which is collected repeatedly at unequally
spaced occasions for each subject, via distinct design matrices for each response. If the
total dimensions of fixed effects and random effects are denoted by p = ∑r

j=1 pj and
q = ∑r

j=1 qj, respectively, then β = (β�
1 , . . . ,β

�
r )� is a p × 1 vector of fixed effects with

each pj × 1 subvector β j used to describe the component mean profile of outcome j, and
bi = (b�

i1, . . . , b
�
ir )

� is a q × 1 vector of unobservable random effects with each qj × 1
subvector bij corresponding to subject-specific features on yij. In the distributional assump-
tion (2), D and Ri are scale-covariance matrices for random effects and within-subject
errors, respectively, and ν is the DOF, which is a tuning parameter to harmonize the fatness
of the tails of a distribution. Besides,D = [Djj′] is a q × q symmetric and positive-definite
matrix with Djj′ being a partition matrix, in particular for j = j′, Djj is a scale-covariance
structure of random effects for the jth outcome, and for j �= j′, Djj′ is that for a pair of
outcome variables.

For the sake of parsimony in scale-covariance matrix Ri, we assume that eij ∼
tsi(0, σjj�i, ν) for j = 1, . . . , r, and ei,k ∼ tr(0,�, ν) for k = 1, . . . , si, where � = [σjj′] is
used to describe the variances and covariances among r outcome variables, and �i is a
time dependence correlation matrix used to address possibly serial correlation among si
irregularly observed occasions. Accordingly, the within-subject error matrix Ei follows the
matrix-t distribution [31], and thereby the stacked ni × 1 vector εi follows the multivari-
ate t distribution with the DOF ν, location vector zero, and scale covariance matrix of
having aKronecker product (KP) structure, written asRi = � ⊗�i, which helps us to esti-
mateRimore accurately. To avoid the nonidentifiability problem resulting fromnonunique
solutions of � and �i in estimating Ri with a KP structure, we need to specify �i as a
correlation matrix rather than a covariance matrix. To make estimation of �i to be more
precise, we could choose a parsimonious structure on this correlation matrix, which can
be a function of parameters φ as well as time points ti, denoted by �i = �i(φ, ti), based
on the characteristics of the data at hand. Under model (1), it can be easily verified that
yi ∼ tni(Xiβ + g(ti),�i, ν), where�i = ZiDZ�

i + Ri.
As recommended by a number of literature related to the work of SMMs, see, for exam-

ple, [5,7,9,32], the unspecified smooth function can be approximated sufficiently well by
a spline basis function. Let ti,1 = t(1)ij < · · · < t(Lj)ij = ti,si be a partition of the interval

[ti,1, ti,si] corresponding to the jth outcome of the ith subject, where t(l)ij is the lth knot for
l = 1, . . . , Lj. Using a truncated polynomial spline basis function of order dj(≥ 1) for the
jth outcome, gj(ti,k) can be represented as

gj(ti,k) = αj,0 + αj,1ti,k + · · · + αj,dj t
dj
i,k +

Lj∑
l=1

α(dj+1)+l(ti,k − t(l)ij )
dj
+ = Bj(ti,k)αj,

where (a)+ = max(0, a), Bj(ti,k) = (1, ti,k, . . . , t
dj
i,k, (ti,k − t(1)ij )

dj
+, . . . , (ti,k − t(Lj)ij )

dj
+) is a

hj × 1 vector of basis functions, and αj = (αj,0, . . . ,αj,dj ,αj,d+1, . . . ,αj,hj , )
� is the spline

coefficient vector of dimension hj = dj + 1 + Lj. Regression splines have some desirable
properties in approximating a smooth function. It often provides good approximations
with a small number of knots. The spline approach also treats a nonparametric function as
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a linear one with the basic functions as pseudo design variables, and thus it linearizes our
model (1) as

yi = Xiβ + B(ti)α + Zibi + εi, (3)

where B(ti) = diag(B1(ti), . . . ,Br(ti)) with Bj(ti) = (Bj(ti,1)�, . . . ,Bj(ti,si)�)� being a
si × hi design matrix corresponding to the spline portion of the model. If the total dimen-
sion of spline effects for r outcomes is denoted by h = ∑r

j=1 hj, then α = (α�
1 , . . . ,α

�
r )�

is a h × 1 vector of spline effects with each hj × 1 subvector αj used for outcome j. For
convenience, model (3) can be rewritten in the following form:

yi = X̃iθ + Zibi + εi, (4)

where X̃i = diag{X̃i1, . . . , X̃ir} with X̃ij = (Xij,Bj(ti)) being a si × (pj + hj) design matrix
combining the fixed-effects and spline-effects designmatrices for the jth outcome of the ith
subject, and θ = (β�,α�)� is a (pj + hj) × 1 combined regression parameter vector to be
estimated. According to the linearization of MtSMM (1) coupled with (2) through a spline
approach, the computational algorithm developed for fitting the MtLMM can be straight-
forwardly implemented for the MtSMM. Following Wang and Fan [22], we introduce a
set of scaling variables τi, and then the MtSMM in (4) can be expressed as a three-level
hierarchical form

yi|(bi, τi) ∼ Nni(X̃iθ + Zibi, τ−1
i Ri),

bi|τi ∼ Nq(0, τ−1
i D),

τi ∼ Gamma(ν/2, ν/2).

(5)

Recall from (4) that bi|τi and εi|τi are implicitly assumed to be independent. Integrating
out the bi in (5), we can express model (4) in a two-level hierarchical form

yi|τi ∼ Nni(X̃iθ , τ−1
i �i), τi ∼ Gamma(ν/2, ν/2). (6)

3. ECM procedure for ML estimation

To carry out ML estimation of unknown parameters of model (4), we develop the EM-
type algorithm [11] which is commonly used in handling the missing-data problem or the
model with incomplete data. The EM algorithm, which consists of the expectation (E) step
and the maximization (M) step at each iteration, has several appealing features such as
simplicity of implementation and monotone increase of the likelihood at each iteration.
Toward this end, we let	 = (θ ,D,�,φ, ν) be the set of entire model parameters. Treating
the unobservable random effects bi and scaling variables τi as the missing data, we have
the complete data {(yi, bi, τi), i = 1, . . . , n}. The complete-data log-likelihood function of
	, omitting constant terms, is

�c(	) =
n∑

i=1
�[i]c (	) =

n∑
i=1

1
2

{
log |R−1

i | + log |D−1| − τi[ε�
i R

−1
i εi + b�

i D
−1bi]

+νlog
(ν

2

)
− 2 log

ν

2
+ ν(log τi − τi)

}
. (7)
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For evaluating the conditional expectation of (7) given the observed data y = {yi, i =
1, . . . , n} and the current estimates of parameters 	̂(r) = (θ̂

(r), D̂(r), �̂(r), φ̂(r), ν̂(r)), we
utilize the results of Theorem 3 in Wang and Fan [22] to get the following proposition.

Proposition 3.1: According to model (4) under the spline approach and the three-level
hierarchical form (5), we have[

yi
bi

]
|τi ∼ Nni+q

([
X̃iθ

0

]
, τ−1

i

[
�i ZiD
DZ�

i D

])
,

bi|(yi, τi) ∼ Nq

(
DZ�

i �
−1
i (yi − X̃iθ), τ−1

i (D−1 + Z�R−1
i Zi)

−1
)
,

τi|yi ∼ Gamma
(
(ν + ni)/2, (ν + �i)/2

)
,

where�i = �i(θ ,D,�,φ, ν) = ε̃�
i �

−1
i ε̃i denotes theMahalanobis distance between yi and

X̃iθ with ε̃i = yi − X̃iθ .

The main steps of EM algorithm proceed as follows:

E-step: Compute the so-called Q function, Q(	|	̂(r)
) = E(�c(	)|y, 	̂(r)

) which is the
sum of Qi(	|	̂(r)

) = E(�
[i]
c (	)|yi, 	̂(r)

), for all i = 1, . . . , n, given by

Qi(	|	̂(r)
) = 1

2

{
log |R−1

i | + log |D−1| − tr(D−1B̂(r)
i ) − tr(R−1

i �̂
(r)
i (θ))

+ ν
(
log(ν/2) + κ̂

(r)
i − τ̂

(r)
i
)}− log(ν/2),

where

τ̂
(r)
i = E(τi|yi, 	̂(r)

) = (̂ν(r) + ni)/(̂ν(r) + �̂
(r)
i ),

κ̂
(r)
i = E(log τi|yi, 	̂(r)

) = Dg

(
ν̂(r) + ni

2

)
− log

(
ν̂(r) + �̂

(r)
i

2

)
,

B̂(r)
i = E(τibib�

i |yi, 	̂(r)
) = τ̂

(r)
i b̂(r)

i b̂(r)�
i + V̂(r)

bi ,

�̂
(r)
i (θ) = E(τieie�i |yi, 	̂(r)

)

= τ̂
(r)
i (yi − X̃iθ − Zîb

(r)
i )(yi − X̃iθ − Zîb

(r)
i )� + ZiV̂

(r)
bi Z

�
i ,

with �̂
(r)
i = (yi − X̃iθ̂

(r)
)��̂(r)−1

i (yi − X̃iθ̂
(r)

), �̂
(r)
i = ZiD̂

(r)Z�
i + R̂(r)

i , R̂(r)
i =

�̂
(r) ⊗�i(φ̂

(r)), b̂(r)
i = E(bi|yi, 	̂(r)

) = D̂(r)Z�
i �̂

(r)−1

i (yi − X̃iθ̂
(r)

), V̂(r)
bi = τ̂

(r)
i cov

(bi|yi, 	̂(r)
) = (D̂(r) + Z�

i R̂
(r)−1

i Zi)
−1.

M-step: Update 	̂(r) by 	̂(r+1) = max	 Q(	|	̂(r)
).

However, the M-step of EM algorithm for fitting the MtSMM is computationally
intractable and thereby does not yield closed-form solutions for parameter estimators. To
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make the estimation procedure more stable and effective, we develop an ECM algorithm
for the proposed MtSMM. The ECM algorithm [30] is a variant of EM with its M-steps
replaced by several computationally simpler conditional maximization (CM) steps.

In our proposedMtSMMmodel, the parameter vector θ is expanded to include the fixed
effects β and the set of B-spline coefficients α. Estimation of MtSMMmodel is essentially
conducted in the same parametricmaximum likelihood framework asMtLMM[22] via the
ECM algorithm, which is an iterative procedure for ML estimation of models containing
missing data or latent variables. As shown by Meng and Rubin [30], the adoption of ECM
algorithm can determine a sequence of consistent roots of the likelihood function, which
are exactly the maximum likelihood estimates (MLEs).

To obtain analytical expressions for parameter estimators at CM-steps, we let ê(r)il =
yil − Xilθ l − Zil̂b

(r)
il and ê(r)is = yis − Xisθ s − Ziŝb

(r)
is , where b̂

(r)
il is a ql × 1 subvector con-

sisting of the (
∑l−1

j=1 qj + 1)th to (
∑l

j=1 qj)th entries of b̂(r)
i . It follows that �̂(r)

(θ) =
[ψ̂ (r)

ils (θ)], where ψ̂ (r)
ils (θ) = E(τieile�is |yi, 	̂

(r)
) = τ̂

(r)
i ê(r)il ê

(r)�
is − ZilV̂

(r)
bilsZ

�
is is a square

matrix of order si with V̂(r)
bils a ql × qs submatrix consisting of the (

∑l−1
j=1 qj + 1)th to

(
∑l

j=1 qj)th rows and the (
∑s−1

j=1 qj + 1)th to (
∑s

j=1 qj)th columns of V̂(r)
bi , for l, s =

1, . . . , r. In summary, the CM-steps of ECM algorithm proceed as Algorithm 1. In CM-
step 2 of Algorithm 1, the first partial derivatives of Q-function with respect to φ and ν,
respectively, to zero cannot deduce the updated estimators in closed forms. We adopted
the nlminb routine in R to perform a numerical search of updated φ̂(r) and ν̂(r). The
nlminb, like other optimization methods, may often suffer from computational difficul-
ties such as slow or nonconvergence. In particular, a poor choice of initial values of φ

and ν may lead to the convergence in the boundary of the parameter space. To over-
come such potential problems, a default recommendation of obtaining reasonable initial
values for φ and ν is recommended. The global optimal solution is obtained by choos-
ing the one with the largest log-likelihood value. In simulation studies, if the method did
not converge for a particular dataset or the method get trapped in one of many local
maxima of the log-likelihood function, one can regenerate an additional dataset in the
procedure.

To study the asymptotic properties of the proposed estimates 
̂ = (β̂
�,ω�, ν̂) and

ĝ(ti) = B(ti)̂α, we give regular conditions in Appendix. Note that ω = (vech(D)�,
vech(�)�,φ�)�; here, vech() is the half-vectorization operator. If (β̂ − β)

p→ 0, and
supt|B(ti)̂α − g(ti)| p→ 0 as n → ∞, (β̂ , ĝ(ti)) are said to be consistent estimators. Under
the regularity conditions sketched in Appendix, we state the following theorem, which
shows the asymptotic properties of the estimates 
̂ and ĝ(ti).

Theorem 3.1: Under the conditions (A.1)–(A.5) in Appendix, if the number of knots Lj
approaches to n1/(2mj+1), then

(i) 1/n
∑n

i=1
∑si

k=1(̂gj(ti,k) − gj(ti,k))2 = Op(n2mj/(2mj+1)), j = 1, . . . , r.

(ii) 
̂
p→ 
,

√
n(β̂ − β)

d→ N(0, I−1
ββ), and

√
n(̂η − η)

d→ N(0, I−1
ηη ), where N =∑n

i=1 si is the total number of observations, η = (ω�, ν)�, the matrices Iββ and Iηη are
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Algorithm 1 ECM algorithm for numerical estimation.

CM-step 1. Fixφ = φ̂(r) and ν = ν̂(r), and update θ̂ (r), D̂(r) and �̂(r) bymaximizingQ(	|	̂(r)
)

to get

θ̂
(r+1) =

( n∑
i=1

τ̂
(r)
i X̃�

i R̂
(r)−1

i X̃i

)−1 n∑
i=1

τ̂
(r)
i X̃�

i R̂
(r)−1

i (yi − Zîb
(r)
i ),

D̂(r+1) = n−1
n∑

i=1
B̂(r)
i ,

σ̂
(r+1)
lm =

⎧⎨⎩(
∑n

i=1 si)
−1∑n

i=1 tr
(
�−1

i (φ̂(r))ψ̂
(r)
ils (θ̂

(r+1)
)
)

for l = s,

(2
∑n

i=1 si)
−1∑n

i=1 tr
(
�−1

i (φ̂(r))
(
ψ̂

(r)
ils (θ̂

(r+1)
) + ψ̂

(r)
isl (θ̂

(r+1)
)
))

for l �= s,

which are the updated estimates of the distinct elements in �.
CM-step 2. Given θ̂ (r+1), D̂(r+1), and �̂(r+1), we calculate (φ̂(r+1), ν̂(r+1)) by maximizing the
constrained Q-function:

(φ̂(r+1), ν̂(r+1)) = argmax
(φ,ν)

{ n∑
i=1

(
r log |�−1

i (φ)| − tr
((
�̂

(r+1)−1 ⊗�−1
i (φ)

)
× �̂

(r+1/2)
i

))

+ ν log
(ν

2

)
− 2 log


(ν

2

)
+ ν(̂κ

(r)
i − τ̂

(r)
i )

}
,

where �̂(r+1/2)
i = �̂

(r)
i (θ̂

(r+1)
).

Convergence step. Iterating the E-step and CM-steps until the user’s specified tolerance or the
default maximum number of iterations is met, we obtain the ML estimates, denoted by 	̂ =
(θ̂ , D̂, �̂, φ̂, ν̂).

defined in condition (A.5),
p→ and d→ denote convergence in probability and convergence

in distribution, respectively.

Under general conditions (Stone [33][Lemmas 8 and 9]), Theorem 3.1(i) implies that∫
(̂g j(t) − g j(t))

2dt = Op(n2mj/(2mj+1)), which is the optimal rate of convergence for esti-
mating g j(ti) under the smoothness condition in (A.2). Theorem 3.1(ii) is useful for
making large-sample inference on β and η such as construction of the confidence band
and hypothesis testing. To this end, we need to obtain the estimate of the variance-
covariancematrix for 
̂. Since 
̂ is consistent and asymptotically normal, the inverse of the
Fisher information matrix evaluated at
 = 
̂ can be used to approximate the asymptotic
variance–covariance matrix of 
̂.

Selection of knots is generally an important aspect of spline smoothing. In this paper,
our main focus is inference on the parameter β . He et al. [34] found that knot selection
is less critical for the estimate of β than for the estimate of g(·). They also pointed out
that in most applications, the primary focus is inference on the parameter β , along with
the understanding of some basic features of g(·). Therefore, they are more concerned with
the efficiency of the parameter estimate. For those reasons, and for the sake of simplic-
ity, He et al. [34] opt for convenient choices of knot placement. More specifically, they
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use the sample quantiles of {ti,k, i = 1, . . . , n; k = 1, . . . , si} as knots. For example, in the
case of three internal knots, these are taken to be the three quartiles of the observed ti,k.
They use cubic splines (i.e. splines of order 4) and take the number of internal knots to
be the integer part of M1/5, where M is the number of distinct values in ti,k. Also, Qin
and Zhu [5] noted that the number of distinct knots has to increase with sample size for
asymptotic consistency. On the other hand, too many knots would increase the variance of
estimators. Therefore, the number of knots must be properly chosen to balance between
the bias and variance. When n goes to ∞, the number of knots should be increasing at
the rate of n1/(2m+1). Consequently, in this paper, the number of internal knots is taken
to be Lj ≈ n1/(2mj+1) for j = 1, . . . , r where mj is an integer, and select the internal knots
equally spaced in the percentile ranks of ti,k. For j = 1, . . . , r, the mj as assumed to be
fixed at mj = 2, therefore we choose Lj ≈ n1/5. This particular choice is consistent with
the asymptotic theory, but it is mainly based on the empirical experience and desire for
simplicity, and by no means it is an optimal choice. Data-adaptive choices for the number
or the placement of knots can be made using leave-one-cluster-out, but we do not pursue
this direction here.

4. Illustration

4.1. PBC sequential data analysis

We consider a subset of longitudinal data on the Primary Biliary Cirrhosis sequential
(PBCseq) cohort study in which 312 patients were recruited from theMayo Clinic between
January 1974 and May 1984, and participated in either of two double-blind, placebo-
controlled, randomized trials with D-penicillamine for treating primary biliary cirrhosis
until April 1988. A clinical laboratory database which comprised ID number, five time-
dependent variables (age and total number of follow-up days), eight categorical variables
(sex, drug and status), two censoring indicators for events, and seven continuous mea-
surement variables (natural logarithm scale of bili and albumin), was established on each
patient who was collected repeatedly and prospectively at yearly intervals under standard-
ized forms, definitions, and study protocols. The data set is composed entirely of 1945 visit
rows and 38 columns (variables) on the 312 randomized patients. It can be freely available
from the R mixAK package and electronically at http://lib.stat.cmu.edu/datasets/pbcseq.
For a more detailed description of the data, one can refer to [35–39].

Orthotopic liver transplantation can be treated as a potentially life-saving alternative for
patients with advanced or end-stage primary biliary cirrhosis. Serum bilirubin and serum
albumin are two of the primary indicators to help evaluate and track the absence of liver
diseases. An extremely higher level than the standards that bilirubin is excreted in bile
and urine can indicate certain diseases. Serum albumin may be harmful to humans hav-
ing too high or too low circulating serum albumin levels. Typically, it is believed that there
exist some relationships between serum bilirubin and serum albumin levels, and thus a
joint analysis of the longitudinally collected bilirubin and albumin has received increas-
ing emphasis in diagnosing liver diseases. As pointed out by Wang [35], there exist some
atypical observations or outliers in the data, and a separate analysis of the two markers
can lose important information about evolutional relationships among multiple responses

http://lib.stat.cmu.edu/datasets/pbcseq
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Figure 1. Trajectories plots for the PBCseq data. Observed evolution (in grey) of lbili and lalbuminmark-
ers for 100 randomly selected patients against time (in month). Solid lines show the smoothed mean
profiles of responses for all patients.

across time. As a consequence, we concentrate on modelling the dependence of the lon-
gitudinal profiles of two markers say natural logarithm of serum bilirubin (lbili) and the
natural logarithm of serum albumin (lalbumin), on time (visited years) and other covari-
ates of interest (e.g. sex, drug, age). The issues that we have to investigate include (i) how
the bilirubin/albumin levels evolve over time; (ii) how the evolution of bilirubin is related
to the evolution of albumin; and (iii) how the association between bilirubin and albumin
evolves over time. Figure 1 displays the trajectories of 100 randomly selected patients for
exploring the evolution of lbili and lalbumin markers. It can be observed that the level
of two markers varies over time in a complicated manner and it is difficult to model the
time trend using a single parametric function. Hence, it is of potential interest in the study
to model the time effect through a nonparametric scheme and to account for the outliers
simultaneously.

We now apply the proposed MtSMM approach to analysing the PBCseq data and com-
paring with the multivariate normal semiparametric mixed-effects model (MNSMM). Let
yi = (y�

i1, y
�
i2)

� be the response vector for the ith patient, where yi1 and yi2 represent
lbili and lalbumin levels, respectively. Apart from the time effect, it is particular of inter-
est to take into account the relationship between the longitudinal evolutions of the two
markers and the covariates of interest, including gender, drug treatment, and age. Thus,
the design matrix for fixed effects β = (β10,β11,β12,β13,β14,β20,β21,β22,β23,β24) can
be specified as

Xi = I2 ⊗ [1si : ti : sexi1si : drugiIsi : agei1si],

where 1si is a si × 1 vector of ones, ti = (ti1, . . . , tisi)� with ti,k = monthi,k/12 (years), sexi
is a gender indicator (0 = male and 1 = female), drugi is a drug treatment indicator (0
= patient treated with placebo, and 1 = patient treated with D-penicillamine); and agei is
the age of patient i at entry in years. The design matrix for random intercept plus slope is
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Zi = I2 ⊗ [1si : ti]. We consider three dependence structures for�i, namely uncorrelated
(UNC), exchangeable (EX) and first-order autoregressive (AR(1)) processes.

To best identify a model supported by the data, we adopt the Akaike information
criterion (AIC; [40]), the Bayesian information criterion (BIC; [41]) and mean squared
prediction errors (MSPE) for the fitted responses. They are defined as

AIC = 2m − 2�max, BIC = m log n − 2�max, and

MSPE = 1
n

∑
i

(Y(−i)
test − Ŷ(−i)

test )�(Y(−i)
test − Ŷ(−i)

test ),

where �max is the maximized log-likelihood value, m is the number of free parameters in
the model, and Y(−i)

test and Ŷ(−i)
test , respectively, are test sets and their predicted values after

leaving out the ith subject.
Table 1 summarizes the values of �max, AIC, and BIC together with MSPE scores under

the fitted MtSMM and MNSMM models. In light of all criteria, the MtSMM with AR(1)
errors is preferred among all candidates. Table 2 presents the summary of theML estimates
of parameters along with the standard errors of fixed effects for theMtSMM andMNSMM
with AR(1) errors. We utilize the nonparametric bootstrapping technique [42,43] to eval-
uate the standard errors of estimators. The idea of the bootstrap is to mimic the process of
randomly sampling from an assumed infinite population. It takes C samples of the same
size drawing with replacement from the original data. For each of these C samples, we cal-
culate the sample standard deviation of these estimates as an estimate of standard error.
Denote by θ̂c, for c = 1, . . . ,C, the C estimates of θ obtained from the bootstrap samples.
The bootstrap standard error for θ̂ is then given by

SE(θ̂) =
√√√√ 1

C − 1

C∑
c=1

(θ̂c − θ̄ )2,

where θ̄ = (1/C)
∑C

c=1 θ̂c is the mean of the estimates across the C bootstrap samples.
Judging fromTable 2, theML estimates of fixed effects under theMtSMMandMNSMM

are somewhat similar, but the standard errors under the MtSMM are moderately smaller
than those under the MNSMM, signifying that the proposed approach enables the practi-
tioners to provide more precise estimates.

Table 1. Summary of model selection criteria for the PBCseq data.

Criteria

Model �i �max AIC BIC MSPE

MtSMM UNC 5090.49 −10142.98 −10054.63 6.40
EX 5251.24 −10462.48 −10376.13 6.38

AR(1) 5358.41 −10672.82 −10590.47 6.13
MNSMM UNC 3817.94 −7593.88 −7515.28 7.24

EX 3938.50 −7835.00 −7756.40 7.18
AR(1) 4018.88 −7995.77 −7917.16 7.10

Note: MtSMM: multivariate t semiparametric mixed-effects model; MNSMM: multivariate normal semiparametric mixed-
effectsmodel; AIC: Akaike information criterion; BIC: Bayesian information criterion;MSPE:mean squared prediction errors
for the fitted responses.
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Table 2. Summary of parameter estimates along with standard errors of fixed effects (in parentheses)
for the PBCseq data.

Parameters MtSMM MNSMM

Fixed effects β10 (Intercept) 1.432 (0.018) 1.428 (0.112)
β11 (Sex) −0.542 (0.010) −0.538 (0.042)
β12 (Drug) −0.015 (0.007) −0.019 (0.013)
β13 (Age) −0.010 (3.3 × 10−4) −0.0102 (0.002)
β20 (Intercept) 1.171 (0.002) 1.172 (0.007)
β21 (Sex) −0.004 (0.001) -0.005 (0.003)
β22 (Drug) 0.010 (8.9 × 10−4) 0.009 (0.001)
β23 (Age) −0.002 (4.1 × 10−5) −0.001(1.1 × 10−4)

Random effects d11 0.807 0.738
d21 −0.012 −0.021
d22 0.317 0.309
d31 −0.022 −0.019
d32 −0.003 −0.002
d33 0.310 0.309
d41 −0.007 −0.006
d42 −0.005 −0.004
d43 −0.095 −0.095
d44 0.256 0.256

Within-subject errors σ11 −0.085 −0.114
σ21 −0.003 −0.002
σ22 −0.222 −0.224
ν 3.120 –
φ 0.407 (0.002) 0.220 (0.287)

Note: MtSMM: multivariate t semiparametric mixed-effects model; MNSMM: multivariate normal semiparametric mixed-
effects model.

Figure 2. The estimated nonparametric function over time (in grey) of lbili and lalbumin markers for
312 patients against time (in month). Solid lines show the smoothed mean profiles for all patients.

The estimated nonparametric functions over time depicted in Figure 2 indicate an
apparent nonlinearity, and it can be responded to basic issues concerning how the biliru-
bin/albumin levels evolve over time, how the evolution of bilirubin is related to the
evolution of albumin, and how the association between bilirubin and albumin evolves over
time. In the first year (first 12 months), the patients have decreasing and increasing trends



272 M. TAAVONI ET AL.

for lbili and lalbumin, respectively, and then followed by the reversed growth patterns for
twomarkers. Among the first to sixth years (around the 75th month), an irregular increas-
ing of lbili is associated with an irregular decreasing of lalbumin, and after the sixth year
the growth of lbili and the decline of lalbumin are strict.

4.2. Simulation studies

In this section, we conduct two simulation studies to examine the performance of the
proposed MtSMM in comparison with other existing models under different degrees of
fat-tailed behaviour and nonlinear patterns of responses across time.

The first simulation is conducted to explore the robustness against outliers and the effect
of ignoring nonlinear trend of responses over time, and thus we compare the MtSMM,
MNSMM and MtLMM approaches. The simulated data with r = 2 outcome variables are
generated from the MtSMM (1) along with assumption (2) and the nonlinear functions,
given by

g1(ti,k) = 2.5 − 1.5ti,k + 0.4t2i,k,

g2(ti,k) = 2sin(2π ti,k) + 2cos(2π ti,k),

where k = 1, . . . , si, the number of observations per subject assumed to be fixed at si = 5
and the measurement time points ti,ks are drawn from uniform distribution on (1, 10)
interval and sorted in ascending order. The design matrix for fixed effects of the first out-
come Xi1 is a si × 2 matrix including an intercept and scheduled visits of time (1 to si),
and that of the second outcome Xi2 is a si × 2 matrix whose first column including an
intercept and second column represents the values of a continuous covariate drawn from a
N(0, 1) distribution. The designmatrix for random effects Zi contains an intercept only for
each outcome. The presumed values of model parameters are β = (β11,β12,β21,β22)

� =
(1, 2,−2, 4, )�,

D =
[

1 0.25
0.25 1

]
, � =

[
2 0.75

0.75 1

]
, and � = Isi .

Besides, two values of DOF, say ν = 5 and 50, are considered to capture a fat-tailed
behaviour and represent near normality, respectively. A quadratic spline with d1 = 2 and
a cubic spline with d2 = 3 are used for the first and second outcomes, respectively. To
examine the finite-sample property of ML estimation, the sample sizes are set to be a small
value, n = 25, and a relatively large value n = 100. Each simulated data set is fitted by the
MtSMM, MNSMM and MtLMM approach, separately, and a total of 100 replications are
run for each combination of ν and n.

Estimation accuracy ismeasured by the empirical biases (BIAS), the standard deviations
(SD), and the empirical mean squared errors (MSE) of the estimated parameters under the
three fittedmodels. In addition,model selection ismade by the computing average values of
AIC and BIC. The results for the cases of n = 25 and n = 100 are given in Tables 3 and 4,
respectively. To present a more comprehensive assessment, we also use other criteria for
performance evaluation of the estimated nonparametric functions g1(·) and g2(·). We use
the mean integrated square error (MRME) in Tables 3 and 4 where the rows are labelled
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Table 3. Simulation results for the cases of sample size n = 25 and DOF ν = 5 and 50.

n = 25

ν = 5 ν = 50

Parameters MtSMM MtLMM MNSMM MtSMM MtLMM MNSMM

BIAS 0.641 7.966 0.645 0.746 7.906 0.746
β11 SD 0.366 0.489 0.418 0.368 0.393 0.368

MSE 0.543 63.701 0.589 0.690 62.658 0.690
BIAS 0.030 0.555 0.064 0.058 0.648 0.064

β12 SD 0.224 0.778 0.265 0.271 0.730 0.270
MSE 0.050 0.908 0.074 0.076 0.947 0.076
BIAS 0.987 1.074 0.955 0.892 1.067 0.879

β21 SD 0.377 0.417 0.377 0.375 0.391 0.373
MSE 1.116 1.324 1.053 0.935 1.289 0.910
BIAS 0.312 1.292 0.215 0.173 1.287 0.151

β22 SD 0.484 0.512 0.414 0.314 0.435 0.300
MSE 0.329 1.930 0.216 0.128 1.844 0.112
BIAS 0.849 0.954 0.965 0.131 0.957 0.110

d11 SD 0.379 0.261 1.325 0.644 0.259 0.737
MSE 0.862 0.977 2.670 0.427 0.983 0.550
BIAS 0.036 0.160 0.303 0.050 0.194 0.086

d12 SD 0.338 0.165 0.990 0.502 0.166 0.562
MSE 0.114 0.053 1.062 0.251 0.065 0.320
BIAS 0.553 1.650 1.703 0.043 1.734 0.302

d22 SD 0.546 0.152 2.070 0.828 0.100 0.939
MSE 0.601 2.744 7.143 0.680 3.017 0.964
BIAS 1.226 3.135 0.188 0.770 3.247 0.595

σ11 SD 0.177 0.511 0.734 0.190 0.614 0.223
MSE 1.533 10.085 0.569 0.627 10.913 0.403
BIAS 0.453 0.768 0.083 0.227 0.770 0.156

σ12 SD 0.157 0.127 0.432 0.240 0.096 0.270
MSE 0.230 0.606 0.192 0.108 0.602 0.100
BIAS 0.398 0.639 2.168 1.556 0.646 1.883

σ22 SD 0.222 0.057 0.507 0.310 0.060 0.344
MSE 0.207 0.411 4.953 2.515 0.420 3.661
BIAS 0.023 3.262 – 1.157 48.999 –

ν SD 0.132 0.439 – 0.979 0.008 –
MSE 0.018 108 – 2.288 2400.884 –
�max −215.329 −232.374 −327.253 −265.923 −228.757 −287.089
AIC 452.658 486.748 674.506 553.846 479.515 594.177
BIC 466.065 500.156 686.695 567.254 492.922 606.366

MISE1 0.710 – 0.789 0.661 – 0.714
MISE2 4.057 – 4.229 3.993 – 4.004

Note: MtSMM: multivariate t semiparametric mixed-effects model; MtLMM: multivariate t linear mixed-effects model;
MNSMM: multivariate normal semiparametric mixed-effects model; BIAS: difference between the mean of the estimates
and the true value of the parameter; SD: standard deviation of the estimates of parameter; MSE: mean squared errors for
the parameters estimates; AIC: Akaike information criterion; BIC: Bayesian information criterion; MISE1: mean integrated
square error for g1(·); MISE2: mean integrated square error for g2(·).

by MISE1 and MISE2 for g1(·) and g2(·), respectively. By the simulation design described
above, we define the MISE1 of a procedure as

E
[∫

T

(̂
g1(t) − g1(t)

)2 dt
]
,

where T specifies the range of t, and MISE1 is approximated by averaging the calculated
integral over the simulated samples. The MISE2 is defined similarly for g2(·). In terms of
the MISE1 and MISE2 criteria, the MtSMM outperforms MNSMM. Although, in the case
of data with larger sample size, the performance of both MtSMM and MNSMM improved



274 M. TAAVONI ET AL.

Table 4. Simulation results for the cases of sample size n = 100 and DOF ν = 5 and 50.

n = 100

ν = 5 ν = 50

Parameters MtSMM MtLMM MNSMM MtSMM MtLMM MNSMM

BIAS 0.724 8.187 0.727 0.740 8.194 0.740
β11 SD 0.190 0.255 0.219 0.162 0.1766 0.163

MSE 0.560 67.085 0.576 0.573 67.173 0.573
BIAS 0.033 0.869 0.023 0.006 0.8257 0.006

β12 SD 0.120 0.272 0.138 0.100 0.247 0.103
MSE 0.015 0.828 0.019 0.010 0.742 0.011
BIAS 0.018 0.162 0.014 0.061 0.179 0.056

β21 SD 0.223 0.239 0.239 0.148 0.214 0.147
MSE 0.050 0.083 0.057 0.025 0.077 0.025
BIAS 0.708 0.568 0.622 0.643 0.509 0.632

β22 SD 0.230 0.286 0.218 0.155 0.211 0.157
MSE 0.552 0.404 0.434 0.437 0.303 0.424
BIAS 0.562 1.028 1.570 0.114 1.044 0.212

d11 SD 0.277 0.167 0.975 0.339 0.158 0.394
MSE 0.392 1.084 3.404 0.127 1.114 0.199
BIAS 0.044 0.244 0.253 0.021 0.237 0.021

d12 SD 0.208 0.087 0.747 0.2708 0.079 0.311
MSE 0.045 0.067 0.616 0.073 0.062 0.096
BIAS 0.332 1.631 1.697 0.102 1.683 0.458

d22 SD 0.293 0.080 0.861 0.351 0.058 0.403
MSE 0.195 2.668 3.612 0.133 2.836 0.370
BIAS 1.137 4.009 0.298 0.768 4.320 0.542

σ11 SD 0.123 0.623 0.403 0.106 0.580 0.123
MSE 1.308 16.452 0.250 0.601 18.998 0.309
BIAS 0.423 0.741 0.121 0.247 0.780 0.156

σ12 SD 0.079 0.058 0.223 0.114 0.056 0.130
MSE 0.185 0.552 0.064 0.074 0.611 0.041
BIAS 0.8078 0.569 2.695 1.921 0.567 2.391

σ22 SD 0.207 0.054 0.260 0.183 0.052 0.175
MSE 0.695 0.326 7.327 3.723 0.325 5.745
BIAS 0.014 3.295 – 0.760 48.998 –

ν SD 0.143 0.080 – 0.976 0.006 –
MSE 0.020 10.864 – 1.520 2400.846 –
�max −994.808 −1034.491 −1400.377 −1135.948 −1038.500 −1226.631
AIC 2011.617 2090.982 2820.753 2293.896 2098.999 2473.262
BIC 2040.274 2119.639 2846.805 2322.552 2127.656 2499.314

MISE1 0.639 – 0.566 0.534 – 0.574
MISE2 3.911 – 3.941 3.887 – 3.925

MtSMM: multivariate t semiparametric mixed-effects model; MtLMM: multivariate t linear mixed-effects model; MNSMM:
multivariatenormal semiparametricmixed-effectsmodel; BIAS: differencebetween themeanof theestimates and the true
value of the parameter; SD: standard deviation of the estimates of parameter; MSE:mean squared errors for the parameter
estimates; AIC: Akaike information criterion; BIC: Bayesian information criterion; MISE1: mean integrated square error for
g1(·); MISE2: mean integrated square error for g2(·).

as expected. Nevertheless, the proposed method has smaller MISE1 and MISE2, which
guarantees the quality of the estimation procedure for the nonparametric function in the
model. When comparing the MtSMM with the MtLMM, it is also worth mentioning that
ignoring the nonlinerity time trend may cause large biases in estimation and produce mis-
leading results in subsequent analyses. Consequently, the proposed MtSMM can provide
greater flexibility inmodel fitting and superiority for outlier resistance, especially when the
variety of responses over time is in a complicated manner.

The second simulation study is conducted to compare the performance of the pro-
posed MtSMM with the MNSMM in the attendance of other heavy tailed distributions
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for random effects and errors. We consider the following four types of distributions for
random effects and errors.

(i) Multivariate t (MVT) distribution: εi ∼ tni(0,Ri, ν), bi ∼ tq(0,D, ν) with ν = 5.
(ii) Multivariate slash (MSL) distribution: εi ∼ SLni(0,Ri, ν), bi ∼ SLq(0,D, ν)with ν =

2.
(iii) Multivariate contaminated normal (MCN) distribution: εi ∼ 0.5Nni(0,Ri) +

0.5Nni(0, 0.3Ri), bi ∼ 0.5Nq(0,D) + 0.5Nq(0, 0.3D).
(vi) Multivariate normal (MVN) distribution: εi ∼ Nni(0,Ri), bi ∼ Nq(0,D)

Table 5 reports the absolute bias of parameter estimates and the relative efficiencies
of our proposed method as compared to its normal counterpart. Obviously, the biases
of the parameter estimates of fixed effects for both models are similar, whereas our pro-
posed approachworks verywell and consistently outperforms its normal counterpart when
the random effects and errors exhibit heavy tails or are contaminated by outliers. Even
when the random effects and errors follow the MVN distribution, the performance of the

Table 5. Estimation accuracy in terms of bias (BIAS) and efficiency for the MtSMM (T) and MNSMM (N)
approaches when the random effects and errors are generated from the multivariate t with DOF ν = 5
(t5), multivariate slash (MSL), multivariate contaminated normal (MCN) and multivariate normal (MVN)
distributions.

Distributions of random effects and errors

Parameters MVT MSL MCN MVN

BIAS(T) 0.770 0.684 0.644 0.687
β11 BIAS(N) 0.703 0.643 0.615 0.695

Efficiency 1.293 1.020 1.103 1.020
BIAS(T) 0.194 0.192 0.151 0.109

β12 BIAS(N) 0.214 0.176 0.172 0.105
Efficiency 1.201 1.159 1.015 0.946
BIAS(T) 0.302 0.210 0.232 0.177

β21 BIAS(N) 0.178 0.139 0.138 0.137
Efficiency 1.151 0.801 0.905 0.926
BIAS(T) 0.049 0.158 0.153 0.242

β22 BIAS(N) 0.223 0.264 0.289 0.299
Efficiency 0.695 0.509 0.513 0.808
BIAS(T) 0.789 0.622 0.577 0.323

d11 BIAS(N) 1.348 2.199 2.553 0.027
Efficiency 21.566 22.682 13.391 0.982
BIAS(T) 0.062 0.039 0.020 0.095

d12 BIAS(N) 0.348 0.357 0.555 0.035
Efficiency 13.586 11.576 10.687 1.414
BIAS(T) 0.226 0.264 0.230 0.322

d22 BIAS(N) 2.267 2.724 3.169 0.791
Efficiency 15.317 16.466 10.238 1.407
BIAS(T) 1.247 1.185 1.156 0.887

σ11 BIAS(N) 0.322 0.655 0.991 0.626
Efficiency 29.242 14.794 11.639 0.470
BIAS(T) 0.438 0.403 0.426 0.312

σ12 BIAS(N) 0.244 0.331 0.411 0.189
Efficiency 20.845 8.842 10.025 1.344
BIAS(T) 0.413 0.258 0.166 1.327

σ22 BIAS(N) 2.357 2.451 2.559 1.847
Efficiency 8.942 2.559 5.063 0.334
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MtSMM model is similar with that of the MNSMM. This is essentially because the latter
method can be treated as a special case of our proposed model, and thus the efficiency
loss is minimal when no outlier is present in the data. When the data are generated from
the MVT, MSL and MCN scenarios, the relative efficiency of estimates obtained from the
MtSMMmay be very high. This is because the MNSMMmay fail miserably when applied
to heavy-tailed distributions.

5. Conclusion

This paper is devoted to proposing a novel robust generalization of the SMM, called as the
MtSMM, inwhich theGaussian distributions for the random effects and thewithin-subject
errors are replaced by the MVT distribution. For analysing multivariate longitudinal data
in the presence of atypical observations or outliers. The formulation of MtSMM assumes
that a single weight is associated with random effects and within-subject errors for each
subject.We have utilized the regression splinemethod to estimate the nonparametric func-
tion of time and provided a feasible ECM algorithm for ML estimation of fixed effects,
random effects, smoothing effects and variance components simultaneously. A key feature
of MtSMM is that it allows us to make systematic inference on all model parameters by
representing a semiparametric model as a modified parametric linear mixed model. Fur-
thermore, the asymptotic properties of the parameter estimators of the MtSMM, denoted
by (̂g(ti), β̂ , D̂, �̂, φ̂, ν̂), have been described in a theorem.

Numerical results in simulations and the PBCseq data example have demonstrated
that the proposed method outperforms the MNSMM counterparts on the provision of
likelihood-based model selection and estimating the regression coefficients, nonparamet-
ric functions, and the variance components. In addition, theMtSMM can provide substan-
tially better fitting performance than the linear or parametric models when the growth
curves of the data exhibit an nonlinear pattern over time, especially in a complicated
manner.

A large number ofworks have been proposed in the literature by adopting amore flexible
class of distributions when the data are contaminated with outliers. The class of elliptically
contoured distributions [45–47] is a multivariate unified framework includingmany of the
most common multivariate distributions such as normal, t, exponential power, Kotz-type,
Pearson-type VII, slash, contaminated normal, logistic, and so on. For future work, one
can consider a joint elliptical distribution for the random effects and within-subject errors.
Another possible future direction is to consider multivariate skew distributions [48,49]
rather than symmetric ones. Inmedical experiments, there commonly exist missing obser-
vations in the responses or covariates and censored responses due to a quantification limit
of assay which should be taken account [50–53]. Therefore, it is of interest to extend the
current approach to accommodate possibly missing values.

As stressed by Harville [54], one potential disadvantage of the ML estimates of variance
components is that they are biased downwards in finite samples. Instead, the REML esti-
mates produce unbiased estimating equations for the variance components by adjusting the
loss of degrees of freedom incurred in estimating the fixed effects. It could also be interest-
ing to develop a feasible procedure to compute reliable t-REML estimates in the proposed
model. Besides, it deserves further investigation to pursue somemodified procedures, such
as the parameter-expanded EM algorithm [16,55] via the covariance adjustment technique
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or the multi-cycle scheme operated in the alternating expectation conditional expectation
algorithm [56], to speed up the parent ECM for estimating MtSMM.
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Appendix

A.1 Score vector and Fisher informationmatrix

The first partial derivatives of log-likelihood function (7) with respect to each element of parameters

 yield the score vector S
, which contains the following entries:

Sβ =
n∑

i=1

(
ν + ni
ν + �i

)
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i �

−1
i (yi − Xiβ),
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}
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− Dg

(ν

2

)
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ν
− log

(
1 + �i

ν
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(ν + �i)ν

}
,
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for l = 1, . . . , g, g = q(q + 1)/2 + r(r + 1)/2 + 2, where Dg(x) = ∂ log
(x)/∂x is a digamma
function, and

◦
�il = ∂�i(D,�,φ)

∂ωl
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Zi
∂D
∂ωl

Z�
i

if ωl = vec(D),
∂�

∂ωl
⊗�i

if ωl = vec(�),

� ⊗ ∂�i

∂ωl
if ωl = φ.

Here, ∂�/∂ωl is one in the (j, l)th and (l, j)th elements of� asωl = σjl, and zero otherwise. Similarly
for ∂D/∂ωl when ωl is the distinct element of D, and ∂�i/∂φ depends on the given correlation
structure.

Moreover, taking the expectation of negative of the second partial derivatives of log-likelihood
function with respect to each element of
 leads to the Fisher information matrix, given by

J
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Jββ

Jβη
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Jηη
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for l, s = 1, . . . , g, with Tg(x) = ∂2 log
(x)/∂x2 being a trigamma function.

A.2 Conditions for the asymptotic property and proof of Theorem 3.1

To study the asymptotic properties of ML estimators, the following regularity conditions are
required.

(A.1) Model (1) is correct, ni is a bounded sequence of positive integers, and the distinct values of
tij form a quasi-uniform sequence that grows dense on [0, 1].

(A.2) The kth-order derivative of g j(ti) is bounded for some k ≥ 2.
(A.3) The parameter spaces for β ,ω, and ν are compact sets ofRp,Rg , andR+, and the true value

of 
̂ is in the interior of the parameter space of 
̂.
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(A.4) As n → ∞, n−1Jββ → Iββ , n−1Jηη → Iηη , and for any p × r vector a �= 0.

maxi
{
a�X�

i Xia
}

a� (∑n
i=1 X

�
i Xi

)
a

→ 0. (A1)

To verify Theorem 3.1, we need the following lemma.

Lemma A.1: Under conditions (A.1) and (A.2), for j = 1, . . . , r, there exists a constant Cj depending
only on dj such that

sup
t∈[0,1]

|g j(t) − Bj(t)αj| ≤ CjL
−mj
j .

The proof of this lemma follows readily from Theorem 12.7 of Schumaker [44].

Proof of Theorem 3.1: By Lemma A.1, we approximate g j(ti) by Bj(ti)αj, then by choosing Lj ≈
N1/(2mj+1) we have (̂

gj(t) − gj(t)
)2

= |̂gj(t) − gj(t)||̂gj(t) − gj(t)|
≤ sup

t∈[0,1]
|̂gj(t) − gj(t)| sup

t∈[0,1]
|̂gj(t) − gj(t)|

≤ CjL
−mj
j CjL

−mj
j = C2

j N
2mj/(2mj+1) = Op(N2mj/(2mj+1))

which proves part (i) of Theorem 3.1. Part (ii) of Theorem 3.1 follows directly from the weak law of
large number, the central limit theorem, and Slutsky’s Theorem. �
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